\(\int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\) [344]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 140 \[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}+\frac {18 \cos (c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos ^3(c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{5 a^2 d} \]

[Out]

-2*arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+18/5*cos(d*x+c)/a/d/(a+a*s
in(d*x+c))^(1/2)-2/5*cos(d*x+c)^3/a/d/(a+a*sin(d*x+c))^(1/2)-4/5*cos(d*x+c)*(a+a*sin(d*x+c))^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {2957, 2937, 2830, 2728, 212} \[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}-\frac {4 \cos (c+d x) \sqrt {a \sin (c+d x)+a}}{5 a^2 d}-\frac {2 \cos ^3(c+d x)}{5 a d \sqrt {a \sin (c+d x)+a}}+\frac {18 \cos (c+d x)}{5 a d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[(Cos[c + d*x]^2*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(3/2)*d) + (18*Cos[c + d*x]
)/(5*a*d*Sqrt[a + a*Sin[c + d*x]]) - (2*Cos[c + d*x]^3)/(5*a*d*Sqrt[a + a*Sin[c + d*x]]) - (4*Cos[c + d*x]*Sqr
t[a + a*Sin[c + d*x]])/(5*a^2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 2937

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[d*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 2)/(b^2*f*(m + 3))), x] - Dist[1/(b^2*(m + 3)
), Int[(a + b*Sin[e + f*x])^(m + 1)*(b*d*(m + 2) - a*c*(m + 3) + (b*c*(m + 3) - a*d*(m + 4))*Sin[e + f*x]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GeQ[m, -3/2] && LtQ[m, 0]

Rule 2957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*((a + b*Sin[e + f*x])^(m + 1)/(b*f*g*(m + p + 2))), x] + Dist[
1/(b*(m + p + 2)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m*(b*(m + 1) - a*(p + 1)*Sin[e + f*x]), x], x]
/; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[m + p + 2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \cos ^3(c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}+\frac {2 \int \frac {\cos ^2(c+d x) \left (-\frac {a}{2}-3 a \sin (c+d x)\right )}{(a+a \sin (c+d x))^{3/2}} \, dx}{5 a} \\ & = -\frac {2 \cos ^3(c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{5 a^2 d}-\frac {4 \int \frac {-\frac {3 a^2}{4}+\frac {27}{4} a^2 \sin (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx}{15 a^3} \\ & = \frac {18 \cos (c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos ^3(c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{5 a^2 d}+\frac {2 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx}{a} \\ & = \frac {18 \cos (c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos ^3(c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{5 a^2 d}-\frac {4 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a d} \\ & = -\frac {2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}+\frac {18 \cos (c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos ^3(c+d x)}{5 a d \sqrt {a+a \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{5 a^2 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.65 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.07 \[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left ((40+40 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right )+30 \cos \left (\frac {1}{2} (c+d x)\right )-5 \cos \left (\frac {3}{2} (c+d x)\right )-\cos \left (\frac {5}{2} (c+d x)\right )-30 \sin \left (\frac {1}{2} (c+d x)\right )-5 \sin \left (\frac {3}{2} (c+d x)\right )+\sin \left (\frac {5}{2} (c+d x)\right )\right )}{10 d (a (1+\sin (c+d x)))^{3/2}} \]

[In]

Integrate[(Cos[c + d*x]^2*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*((40 + 40*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c +
 d*x)/4])] + 30*Cos[(c + d*x)/2] - 5*Cos[(3*(c + d*x))/2] - Cos[(5*(c + d*x))/2] - 30*Sin[(c + d*x)/2] - 5*Sin
[(3*(c + d*x))/2] + Sin[(5*(c + d*x))/2]))/(10*d*(a*(1 + Sin[c + d*x]))^(3/2))

Maple [A] (verified)

Time = 0.36 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.80

method result size
default \(\frac {2 \left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (-5 a^{\frac {5}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )+\left (a -a \sin \left (d x +c \right )\right )^{\frac {5}{2}}+5 a^{2} \sqrt {a -a \sin \left (d x +c \right )}\right )}{5 d \,a^{4} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}}\) \(112\)

[In]

int(cos(d*x+c)^2*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/5/d/a^4*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(-5*a^(5/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1
/2)/a^(1/2))+(a-a*sin(d*x+c))^(5/2)+5*a^2*(a-a*sin(d*x+c))^(1/2))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.69 \[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\frac {5 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a \sin \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) - \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} - 2 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) - 9\right )} \sin \left (d x + c\right ) - 7 \, \cos \left (d x + c\right ) - 9\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{5 \, {\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d \sin \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/5*(5*sqrt(2)*(a*cos(d*x + c) + a*sin(d*x + c) + a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) -
2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x +
c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt(a) - 2*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 - (
cos(d*x + c)^2 - 2*cos(d*x + c) - 9)*sin(d*x + c) - 7*cos(d*x + c) - 9)*sqrt(a*sin(d*x + c) + a))/(a^2*d*cos(d
*x + c) + a^2*d*sin(d*x + c) + a^2*d)

Sympy [F]

\[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {\sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)**2*sin(d*x+c)**2/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Integral(sin(c + d*x)**2*cos(c + d*x)**2/(a*(sin(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2} \sin \left (d x + c\right )^{2}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2*sin(d*x + c)^2/(a*sin(d*x + c) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.03 \[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\frac {5 \, \sqrt {2} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {5 \, \sqrt {2} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, \sqrt {2} {\left (4 \, a^{\frac {17}{2}} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 5 \, a^{\frac {17}{2}} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{10} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{5 \, d} \]

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/5*(5*sqrt(2)*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^(3/2)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 5*sqrt(
2)*log(-sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^(3/2)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 2*sqrt(2)*(4*a^(17
/2)*sin(-1/4*pi + 1/2*d*x + 1/2*c)^5 + 5*a^(17/2)*sin(-1/4*pi + 1/2*d*x + 1/2*c))/(a^10*sgn(cos(-1/4*pi + 1/2*
d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,{\sin \left (c+d\,x\right )}^2}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((cos(c + d*x)^2*sin(c + d*x)^2)/(a + a*sin(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^2*sin(c + d*x)^2)/(a + a*sin(c + d*x))^(3/2), x)